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Interaction of radiation with thermally developing laminar forced convection of power-law, 
non-Newtonian, absorbing, emitting, isotropically scattering, gray fluid through an 
isothermal circular tube with a black boundary is investigated. The energy equation is 
solved by an implicit finite-difference scheme, while the radiation part of the problem is 
solved by the collocation method. Results are presented for the effects of conduction-to- 
radiation parameter, single scattering albedo, optical thickness and the inlet temperature 
on the local Nusselt number along the tube for the case of power-law index n=1/3, 1 
and 3, where the case n= 1 corresponds to the Newtonian fluid. 
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I n t r o d u c t i o n  

Heat transfer by simultaneous radiation and convection is 
important in many engineering applications such as those 
involving furnaces, combustion chambers and high temperature 
heat exchangers. Some studies t-4 have been reported on the 
interaction of radiation without scattering effects in circular 
ducts. Azad and Modest s investigated the problem of combined 
radiation and turbulent forced convection in absorbing, emitting 
and linearly anisotropic scattering gas-particulate flow through 
a circular tube. Yener and Fong 6 studied the interaction of 
radiation and laminar forced convection in a circular pipe by 
treating the radiation part rigorously, but neglecting the emission 
of the fluid. 

Furthermore, all of the foregoing papers dealt with the 
problems of combined radiation and convection for Newtonian 
fluids through ducts. The assumption of Newtonian fluids is 
true for all gases and ordinary fluids such as water and oils. 
However, some special fluids such as colloids, emulsions and 
slurries exhibit the behavior of non-Newtonian fluids, i.e., 
nonlinear relationship between shear stress and velocity gradient. 
In this work, the interaction of radiation and convection for a 
thermally developing, hydrodynamically fully developed, steady 
laminar flow of non-Newtonian fluid in a circular duct has been 
investigated. 

Analysis 

Consider thermally-developing hydrodynamically-developed 
steady laminar flow of an absorbing, emitting, isotropically 
scattering gray non-Newtonian fluid through a circular duct 
with an isothermal black wall. The fluid at a uniform temperature 
T~ enters the heated section of the tube at the origin of the 
coordinate x = 0  with a fully developed velocity profile u(r), 
while the tube wall is kept at a constant temperature T~ for 
x > 0, as shown in Figure 1. 

Assuming constant thermo-physical properties for the fluid, 
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neglecting viscous dissipation, axial conduction and axial 
radiation for Re Pr>> 1, 4 the energy equation in dimensionless 
form can be written as 

_ _ _  1 aO(n. 0 1 a[nQ'(n. O] W(n) a o ( , .  ~) a2o(n. ~) + 

4 a~ at/2 n an nN an 

0<n<l ,  ~>0 (1) 
subject to the boundary and inlet conditions 

ao(0, 0 
- - = 0  n=0, ~>0 (2) 

an 
®(1, ~ )=Ow= 1 n = l .  ~ > 0  (3) 

O(n, O) = Oi 0 < n < 1, ~ = 0 (4) 

where Or = TdTw and the normalized velocity profile for power- 
law non-Newtonian fluid is taken as 7 

U(n) = 1 + 3n 
1 + n  (1 --n <1 +")/") (5) 

Here the power-law index 0 < n < 1 characterizes a dilatant fluid, 
n = 1 a Newtonian fluid and 1 < n < oo a pseudoplastic fluid. 

For the radiation part of the problem, we assume an 
absorbing, emitting, isotropically scattering, gray fluid in a 
circular tube with black wall maintained at a constant tem- 
perature Tw. The equation of radiation transfer and the boundary 
condition are given by s 

[sin O eos ck ~z--! sin O sin dp ~ + lll(z, O, dP)=S(z)+~ G(z) 

O<z<%, O<~k<rc, 0<~b<2n (6) 

and 

I(zo, ~b, ~b)=h2eT4w/Tt 0_<~/_<7~, 0<¢#_<2n (7) 

where l(z, ~k, ~) is the radiation intensity, z is the optical 
variable, $ and ~b are the polar and azimuthal angles, respectively, 
co is the single scattering albedo, and G(z) is the incident 
radiation defined as 

f/;: O(z) = I(z, O, q~) sin 0 dO dq~ (8) 
= 0  = 0  
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and S(z) is the source term, given by 

S(z) = (1 - co)hZfT#(z)/x (9) 

The radiation problem defined above is transformed into 
Fredholm integral equation for the incident radiation G(T) by 
following an approach described in Ref. 9, f:o 
G*(z)= Y(T)+ [S*(t)+coG*(t)]Lo(z, t)t dt (10) 

=0 

where 

G*(z) = G(z)/4h2#r~ (1 la) 

,.,.,=!f-,. co.,,F cos ,-i 
. ,=o  ~,=o L sin~k J 

exp[ 4 ' o  2 -  z2 sin2 ¢] sin × s-~-n~ ] ~ d~b de  (llb) 

S*(z) = (1 - o)®a(Q (1 lc) 

and the kernel Lo(z, t) is defined by 

, > ,  

=o (lid) Lo(z, t )= 1 
(-- 1)" fu  I°(r/M)K°(t/ID 

=0 p2 dp z < t  

Here I o and K o are the modified Bessel functions. 

We assume the dimensionless source term S*(z) can be 
expressed as a polynomial of order M in the even power of z 
because of symmetry in a solid cylinder, i.e., 

M 
S * ( z ) = ( 1 - o )  ~ Sm z~ m = 0 , 2 , 4  . . . . .  M (12) 

m=O 

To solve the integral equation 10 with the collocation 
method, the dimensionless incident radiation G*(x) is expanded 
as 

J IO( 'C /2 j )  
G*(r)= ~ a j - -  (13) 

j = ~ Io (Zo/2j) 

where J = (L+ 1)/2 with L being odd, a I are the unknown 
expansion coefficients and Io(x ) is the modified Bessel function 
of the first kind of order zero. The eigenvalues 2 2 are determined 
from the solution of the eigenvalue problem 1° 

1(1-1) "2" I [-(l+I) 2 12 "] 
~ - -  0~-2( ) + _ / ~ + 7 - - - / g f f 2 ) - t  (l+2)(l+ 1) g1+2(2) 
' , t ,n- 1 atL ht+l /h - l J  hl+lhl 

= 220t(2) (14) 

where /=0,  2, 4 . . . . .  L - 1  and Ot are Chandrasekhar's poly- 
nomial defined by 11 

(I + 1)Or + 1 (2) = ht2oz(2 ) -  lot- 1 (2) (15) 

The coefficients h~ are determined from 

h t = 21 + 1 - CO6o, t (16) 

where 6~,j denotes the Kronecker delta. Note that Equation 14 
is valid only for co < 1; and some modifications are required for 
the special case of co= 1) 2 The eigenvalues 22 are determined 
by solving Equation 14 with a FORTRAN program given in 
the EISPACK program package? 3 

To apply the collocation method, the representation given 
by Equation 13 is introduced into Equation 10 and a set of 
collocation points z¢, c=  1, 2 . . . .  , J are chosen. The following 
system of linear algebraic equations result for the unknown 

N o t a t i o n  
aj 
Dh 
G(~, 0 
G*(~, 0 
l(z, ~k, ¢) 
Io(X) 

J 
k 
L 
Lo(Z, t) 
M 
N 

n 

Pr 
Q'(T, ¢) 
q'(~, 0 
q~(O 
R 
Re 
t 
s(~. 0 
S*(~, 0 

Expansion coefficients defined by Equation 13 
= 2R, hydraulic diameter 
Incident radiation 
= G/4h2#T~, dimensionless incident radiation 
Radiation intensity 
The first kind modified Bessel function of order 
zero 
= ( L +  1)/2 
Thermal conductivity 
An odd number used in Equation 14 
Kernel defined by Equation 1 ld 
An even number used in Equation 12 
= (k/R)/4fiZ#T~, conduction-to-radiation 
parameter 
Power-law index for non-Newtonian fluid 
Refractive index 
= v/s, Prandtl number 
=q'/4h26T~,  dimensionless radiation heat flux 
Radiation heat flux 
Total heat flux to the fluid at the wall 
Radius of circular duct 
= U=Ddv, Reynolds number 
Radial variable 
= source term 
= ( 1 -  co)O 4, dimensionless source term 

S m 

TO1, ~) 
T, 

Tw 
U(,7) 
U,. 
X 

Expansion coefficients defined by Equation 12 
Temperature distribution 
Inlet temperature 
Mean temperature 
Wall temperature 
Normalized velocity profile 
Mean velocity 
Axial distance along the duct 

Greek symbols 
0~ 

6ia 
8 

4, 
q 
2 
V 
®(n, O 
®t 

"C o 
"C c 
CO 

Thermal diffusivity 
Kronecker delta 
Convergence criterion 
Polar angle 
Azimuthal angle 
= r/R, dimensionless radial variable 
Eigenvalue 
Kinematic viscosity 
= T/Tw, dimensionless temperature distribution 
= TdTw, dimensionless inlet temperature 
Stefan-Boltzmann constant 
Optical variable 
Optical thickness 
Collocation points 
Single scattering albedo 
= (x/Dh)/(Re Pr), dimensionless axial coordinate 
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expansion coefficients aj: 

Io(%/~) \~J J j= l  =0 

= Y(%)+ S*(t)Lo(%, t)t dt c = 1, 2 . . . . .  J (17a) 
=0 

where the collocation points % are the zeros of the Cbebysbeff 
polynomial v~ which are shifted to the interval [0, %], i.e., 

% = 1 + cos n c = 1, 2 . . . . .  J (17b) 

The number of collocation points J used in the calculation 
varies from 15 for small optical thicknesses (i.e., %< 1) to 20 
for large optical thicknesses (i.e., % > 1). 

For a given temperature distribution, the expansion co- 
efficients a~ are determined from the solution of the system of 
Equations 17a,b and G*(z) is computed from Equation 13. 

The divergence of radiation flux appearing in Equation 1 
is related to G*(z) by a 

10EqQ'(q, ~)2 % o[,cQr(T, ~)] 
- = %(1 - o 9 ) l - ® ' ( z ,  ~) - G * ( z ,  ~)] 

q &l ~ & 

(18) 

The case o9= 1 is not considered in the present problem, 
because for o9-- 1 the divergence of the radiation flux vanishes as 
apparent from Equation 18, hence the radiation and convection 
problems are uncoupled. 

Introducing the divergence of radiation flux given by Equation 
18 into the energy equation, we obtain 

U(F~) 00(/7, ~) (~20(r/, ~) 1 O@(r/, ~) 
- -  ~ A[O"(,~, ~ ) -  G*('~, ~)] 

4 0~ 0q 2 q dq 

0 < r / < l ,  ~>0  (19) 

where A = ( 1 -  o9)%/N. At the center of the cylinder, r/= 0, this 
equation should be replaced by 

V(q) OO(0, ~) 020(0, ~) 
- -  - - - 2  - -  A [ O ' ( 0 ,  ¢ ) - G * ( 0 ,  ~)] 

4 O~ 0/? 2 

r/=0, ~>0  (20) 

Therefore, Equations 19 and 20 together with the boundary 
condition at q=  1, (i.e., Equation 3) and the inlet condition, 
(i.e., Equation 4) represent a nonlinear boundary-value problem. 

Because the radiation parts in Equations 19 and 20 depend 
on the temperature distribution ®(q, ~), iteration is needed at 
each A~. That is, a temperature distribution, say, O°(q, ~), is 
first guessed, and the radiation part is solved by the collocation 
method and the incident radiation term G*(r) is determined. 
Knowing G*(Q, the energy equation is then solved to obtain 
a new temperature ®x(r/, ~) by using an implicit finite difference 
scheme. Successive iteration is continued until ®=(q, ~) con- 
verged to e, i.e., I®m(r/, ~ ) -O ' -~( r / ,  ~)l<e where e is a small 
prescribed quantity. In the present calculations the value of 
is set to be 10-s. Upon convergence, the solution is advanced 
to the next A~. For the calculations, 41 mesh points were chosen 
in the radial direction r/. 

Once the temperature distribution O(q, ~) and the incident 
radiation are available, the dimensionless radiation heat flux 
Q'(z, ~) is computed by integrating Equation 18, to yield 

Q'(z, ~)-- t[@4(t, ~)-G*(t ,  ~)] dt (21) 
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The local Nusselt number is determined from its definition 

q~(~) 
Nu(~) = (22a) 

k(T.- T~)/Dh 
where the total heat flux at the wall qr(~) is obtained from 

qr(~) ao(1, ~) 
1-1 Q'(1, ~) (22b) 

2k Tw/Oh &/ N 

and the mean temperature Tm(~ ) is given by 

2(1 +3n) ~1 
__T~(~)= @.(~) = @(q, ~)(1- ~/t~ +")/")q d~/ (22c) 

Jo T w l + n  

Finally, the expression for the local Nusselt number becomes 

I ' ] 
2 OO(1, ~) F~  Q (1, ~) (23) 

Nu(~) Om(~)-I  &/ 

which consists of a conduction and a radiation terms. 

R e s u l t s  a n d  d i s c u s s i o n  

Figures 2-5 show the effects of the conduction-to-radiation 
parameter N, single scattering albedo o9, optical thickness Zo 
and inlet temperature ®~ on the local Nusselt number Nu along 
the tube for each of the power-law index n = 1/3, 1 and 3, where 
n = 1 corresponds to the Newtonian fluid. In all these figures, 
the local Nusselt number decreases with increasing n because 
the flow velocity near the wall decreases as n increases; as a 
result, heat transfer from the wall is reduced. In each of these 
curves, when radiation is present, the local Nusselt number 
shows a minimum and with stronger radiation the minimum 
appears to be shifted toward smaller values of ~. The reason 
for this minimum is the fact that the radiation contribution 
to the local Nusselt number increases monotonically with 
increasing ~ whereas the conduction contribution to the local 
Nusselt number decreases monotonically with increasing ~. 

In Figure 2, the results are presented to show the effects of 
the conduction-to-radiation parameter for the cases N = 0.02, 
0.05 and 0.5 by setting o9 = 0.5, zo = I, and ®~ = 0.5. The values of 
N = 0.5 and N = 0.02 correspond to weak and strong radiation, 
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Figure 2 The effects of the conduction-to-radiation parameter N 
on the local Nusselt number for different fluids for 0)=0.5, %=1 
and @t=0.5 
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Figure 4 The effects of the optical thickness z o on the local Nusselt 
number for different fluids for N=0.4,  co=0, and 0 ,=0 .5  

respectively. The local Nusselt number increases with decreasing 
N, because stronger radiation helps to increase the heat transfer 
rate, hence the Nusselt number. The power-law index n has the 
significant effects on the local Nusselt number for small values 
of N. 

Figure 3 shows the effects of single scattering albedo for the 
cases co=0, 0.5 and 1 by setting N=0.04,  %=1 and ®i=0.5. 
The values of single scattering albedo co=0 and co= 1 corre- 
sponding, respectively, to nonseattering and pure scattering 
cases have the highest and the lowest local Nusselt number, 
respectively. The case co = 1 is identical to pure convection. The 
effect of the power-law index n is the most significant on the 
local Nusselt number for co--0. 

Figure 4 illustrates the effects of optical thickness To on the 
local Nusselt number by setting N=0.4 ,  co=0, and O~=0.5. 
The values of the optical thickness considered include To= 5, 
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Figure 5 The effects of the inlet temperature O, on the local Nusselt 
number for different fluids for N=0.05,  co=0.2, and %= 1 

10, 15, and 20. As the radiative heat flux vanishes in both limits 
of To = 0 and % --* oo, we expect that the highest radiative heat 
flux occurs somewhere in the intermediate optical thickness. 
As a result, the local Nusselt number first increases with 
increasing optical thickness until some critical value of To is 
reached and then, beyond that point the trend is reversed to 
attain an asymptotic value, i.e., the pure convection case. This 
is the reason why the curves for To = 15 and 20 lie between the 
curves for % = 5 and To = 10. 

Finally, Figure 5 is prepared to show the effects of the inlet 
temperature O+ on the local Nusselt number for the cases 
0+=0.2, and 0+=0.8, by setting the other parameters as 
N=0.05,  co=0.2 and To= 1. With increasing O+, the local 
Nusselt number increases because the mean temperature, hence, 
the radiative heat flux increases significantly. However, the 
effects of O+ diminish gradually at the locations far away from 
the inlet, because the temperatures for different values of Oi 
are indistinguishable and close to the wall temperature. 

All the numerical calculations in this work were performed 
on the IBM 3081 computer. A few seconds of CPU time is 
required to solve the pure convection case. However, the cases 
of simultaneous convection and radiation require larger CPU 
times as a result of calculations of the radiation terms as well 
as the iteration scheme for the purpose of convergence. The 
value of the conduction-to-radiation parameter significantly 
affects the computing time. For  example, in Figure 2, decreasing 
N from 0.5 to 0.02 increases the CPU time from about 30 sec 
to 2 min. 
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